服务热线: 86 0755 0000000
陶瓷技术
联系我们
联系我们
电话: 86 0755 0000000 
邮箱: xxxxxx@xxxxxx.com 
地址: 某某省某某市某某区 某某街道某某社区某某路xxx号
陶瓷技术
工业精密氧化锆陶瓷切割、磨削、研磨和抛光        工业精密氧化锆陶瓷切割常用三种方法:固定磨料切割、游离磨料切割和单刃切割。高性能工业精密陶瓷应用开发是以三相复合陶瓷材料ZTA为原料,研制生产的陶瓷拉制模具和陶瓷塔轮及其工业应用产品。 氧化锆陶瓷的塑性变形        氧化锆陶瓷在常温下无塑性变形,其抗压强度大,而抗拉、抗弯、抗冲击强度较小,表现为易脆性断裂。根据材料的配比,氧化锆陶瓷的理论强度很高,但其实际强度只有理论强度的1%左右。 氧化锆陶瓷的强化        目前比较成熟的强化技术有复合强化、瓷结晶化、瓷致密化、预应力强化等几种方法。高性能结构工业精密陶瓷应用开发是以三相复合陶瓷材料ZTA为原料,研制生产的工业精密氧化锆陶瓷产品。  以上就是贝斯特精密陶瓷为大家带来的内容,贝斯特陶瓷是一家专注生产加工陶瓷的厂家,专注氧化铝陶瓷件、氧化锆陶瓷加工,可以根据您的需求来加工陶瓷产品。
发布时间: 2022 - 03 - 24
浏览次数:143
结构陶瓷是一种通过高温烧结而成的无机非金属材料,具有耐高温、耐腐蚀、耐磨损及抗热冲击等优点。近年来,随着结构陶瓷增韧强化技术的进步以及机械加工方法的开发,其应用范围迅速扩大。   1.加工方法依结构陶瓷产品性能要求的不同、工艺不同有很多的加工方法,一般还是以机械加工为主。陶瓷材料的精加工,依据加工能量方式的不同可分为力学、化学、光学、电学、电化学、光化学方式共六大类加工方法。其中化学方式有蚀刻和化学抛光;电学方式有电火花加工、电子束加工、离子束加工和等离子体加工,光学方式有激光加工。电化学方式有电解抛光。光化学方式有光刻技术。但常见的以力学方式为主。力学加工方式可分为两大类:磨料加工和刀具加工。刀具加工主要是指切割加工,而磨料加工技术磨料所处状态又分为固结磨料加工、悬浮磨料加工和自由磨料加工。     根据设定的工件和工具的相对位置关系可将机械加工方法大致分为两种方式:强制进给方式和压力进给方式,强制进给方式为普透机床上所用的加工方式,根据机床的动态精度,决定吃刀深度设定值及工件的精度(母性原则),玻化砖的磨削加工就属于这种加工方式,这种方式的特点是加工形状精确。加工效率高。     压力进给方式(以研磨为例)是在磨具、工件表面的突起部分进行选择性加工,从而提高精度的方式。加工平面、球、圆筒等比较简单的形状时,如果注意磨具的形状精度,就能使加工精度优于机床精度,这是这种加工方式的特点。以往,需进行精加工时,通常采用压力进给方式,但是必须指出的是这种加工方式缺乏形状赋予性。另外,还存在如下缺点:需要较长的加工时间,磨具通过一次的磨除量也很难确定。通常采用工件与磨具之间大的接触面积形式,因此适用于加工光洁度要求较低的面。     采用磨料加工时,磨料不同的支撑方式会使加工特性发生变化。具体讲,可以是磨削砂轮或徐附磨具(磨料粘附在布、纸上而成的磨具,如砂布、砂纸等)那样固结的方式;也可将悬浮磨料分散在工具表面或使磨料以三维自由度运动(如研磨、滚筒抛光、粘弹性流动加工等);或悬浮磨料在一个方向上高速运动,冲击工件,形成切割或抛光效果(如喷射加工)。此外,磨料的支撑是刚性的、弹性的还是粘弹性的,也将影响磨料分担荷皿和吃刀深度,使加工机理发生变化。  用以往的加工方法进行微细加工时,作用在工具上的压力过大,很难避免其变形破坏,因此以波束形式供给加工能量,例如激光加工、离子束加工等就属于这种方式。  这些加工方法中,机械加工方法的效率高,因而在工业上获得广泛应用,特别是金刚石砂轮磨削、研磨和抛光较为普遍。进行表面精加工时,可采用上图中1~5,7~10和15所示的方法,其他加工方法大多适用于打孔、切割或微加工等。切割时大多用金刚石砂轮进行磨削切割,打孔时按照不同孔径分别进行超声波加工、研磨或磨削方式加工。  2.结构陶瓷加工的主要问题  结构陶瓷加工虽然有许多方法,但加工成本高,加工效率低,加工精度差。其主要原因之一是结构陶瓷的硬度非常高。对于结构陶瓷,未烧体或焙烧体主要用切削加工进行粗加工,烧结后用磨削进行精加工。  根据情况不同,也可以不经加工,直接磨削加工烧结体使之达到设计精度。  就加工过程而言,结构陶瓷与金属零件几乎是相似的,但结构陶瓷的加工余量则大得多。未烧体或焙烧体结构陶瓷粗加工时,易于出现强度不足或表面加工缺陷问题,或由于装卡不充分等原因,而不能获得所要求的最终加工形状。由于烧结时不能保持收缩均匀,在粗加工时就要使尺寸不要太靠近最终尺寸,所以留有的精加工的余量就大。对于金属加工,精加工余量如考虑热变形和热处理产生的黑皮,则应尽可能留百分之几毫米。对结构陶瓷加工来说,精加工余量则需有几毫米甚至十几毫米。加工余量大,生产率降低,生产成本升高。结构陶瓷加工的另一个问题是加工刀具费用大。结构陶瓷的切削加工需使用高价的烧结金刚石、CBN刀具,精加工也是以金刚石砂轮为主,因此刀具费用要高出金属切削所用刀具数十倍至百倍。此外,结构陶瓷的强度对于加工条件是敏感的,难于实现高效率加工
发布时间: 2022 - 05 - 05
浏览次数:112
陶瓷注射成型(Ceramic Injection Molding,简称CIM)是将聚合物注射成型方法与陶瓷制备工艺相结合而发展起来的一种制备陶瓷零部件的新工艺。特别是对尺寸精度高、形状复杂的陶瓷制品的大批量生产,采用陶瓷粉末注射成型有优势。目前,陶瓷注射成型已广泛用于各种陶瓷粉料和各种工程陶瓷制品的成型,通过该工艺制备的各种精密陶瓷零部件,已用于航空、汽车、机械、能源、光通讯、生命医学等领域。一、陶瓷粉末注射成型的技术特点从技术特点来说,陶瓷粉末注射成型和金属粉末注射成型类似,理论上任何形式的陶瓷粉末原料,如ZrO2、Al2O3、Si3N4等,都能利用CIM工艺制造形状复杂、精度高的产品其基本工艺过程陶瓷粉末注射成型工艺的主要特点如下:①成型过程具有机械化和自动化程度高、生产效率高、成型周期短、坯体强度高,生产过程中的管理和控制也很方便,易于实现大批量、规模化生产;②可近净成型各种几何形状复杂的及有特殊要求的小型陶瓷零部件,使烧结后的陶瓷产品无需进行机加工或少加工,从而减少昂贵的陶瓷加工成本;③注射成型过程中加入的粘结剂较多,需先经过低温脱脂工艺,才能进而高温烧结,对于厚度大的制品,脱脂时间可能长达100-200小时。④成型时,陶瓷粉末和粘结剂的混合均匀,后期烧结其收缩一致,得到的陶瓷制品各部位密度均匀,因而这类产品具有极高的尺寸精度和表面光洁度。二、陶瓷粉末注射成型工艺环节包括4个环节:1、注射喂料的制将合适的有机载体(具有不同性质和功能的有机物)与陶瓷粉末在一定温度下混炼、干燥、造粒,得到注射用喂料;粉末注射成型不仅要求粉末无团聚、洁净无杂质等,还希望陶瓷粉末能满足注射成型对熔体流变性能的要求,提高成型过程的稳定性,且要对陶瓷粉末的粒度分布进行优化,提高固相体积分数或降低悬浮体粘度。2、注射成型混炼后的注射混合料于注射成型机内被加热转变为黏稠性熔体,在一定的温度和压力下高速注入金属模具内,冷却固化为所需形状的坯体,然后脱模。 3、脱脂通过加热或其他物理化学方法,将注射成型坯体内的有机物排除;脱脂工艺是陶瓷注射成型工艺中极为关键的一环,其耗时较长。随着粘结剂体系的增加和改进,形成了多种新的CIM脱脂方法,包括溶剂脱脂、虹吸脱脂、催化脱脂、水基萃取脱脂、超临界萃取脱脂、微波脱脂等。4、烧结脱脂后陶瓷素坯在高温下致密化烧结,获得所需外观形状、尺寸精度和显微结构的致密陶瓷部件。烧结速度与粘性流动、凝结、容积扩散、表面扩散等有关。颗粒的直径越小、熔融粘度越低,且表面张力越大,烧结速度就越快。而且烧结后,制品一般会有约13-20%的收缩率。 三、陶瓷粉末注射成型工艺的应用1、高温热机陶瓷部件主要是发动机涡轮转子和燃气轮机陶瓷叶片等热机陶瓷部件,材料通常为氮化硅或碳化硅等耐高温的陶瓷。2、光通讯用精密陶瓷件光纤连接器用四方氧化锆陶瓷插芯和氧化锆陶瓷套筒。3、医学用生物陶瓷制品包括外科机械用各种陶瓷器件、陶瓷关节、牙齿矫正用透明陶瓷槽、牙齿修复用陶瓷螺杆和牙桩等,这些产品尺寸小、形状复杂、精度高。4、电子机械用零部件半导体和电子行业广泛使用的各种Al2O3体系绝缘陶瓷零部件、小型精密陶瓷滑动轴承、各种陶瓷喷嘴等。5、现代生活用陶瓷制品有耐磨陶瓷表壳与表链、耐磨损的陶瓷推剪、陶瓷刀等,克服了金属易氧化和产生化学致过敏的缺点。
发布时间: 2022 - 04 - 16
浏览次数:118
对于一些坯料无可塑性和形状复杂、尺寸要求准确的工业结构陶瓷产品来说,目前常采用一种叫热压注成型的方法来成型。所谓热压注成型法,就是在压力作用下,将熔化的含蜡浆料(蜡浆)注满金属模中,并在模中冷却凝固后,再脱模。这种方法所成型的制品尺寸较准确,光洁度较高,结构紧密,现已广泛地用于制造工业陶瓷产品。目前,有些日用瓷产品正在试用热压注成型,国外也已有热压注的工艺生产线出现,热压注成型正成为日用瓷成型发展的新方法之一。
发布时间: 2022 - 04 - 13
浏览次数:132
结构陶瓷是一种通过高温烧结而成的无机非金属材料,具有耐高温、耐腐蚀、耐磨损及抗热冲击等优点。近年来,随着结构陶瓷增韧强化技术的进步以及机械加工方法的开发,其应用范围迅速扩大。  1.加工方法 依结构陶瓷产品性能要求的不同、工艺不同有很多的加工方法,一般还是以机械加工为主。陶瓷材料的精加工,依据加工能量方式的不同可分为力学、化学、光学、电学、电化学、光化学方式共六大类加工方法。其中化学方式有蚀刻和化学抛光;电学方式有电火花加工、电子束加工、离子束加工和等离子体加工,光学方式有激光加工。电化学方式有电解抛光。光化学方式有光刻技术。但常见的以力学方式为主。力学加工方式可分为两大类:磨料加工和刀具加工。刀具加工主要是指切割加工,而磨料加工技术磨料所处状态又分为固结磨料加工、悬浮磨料加工和自由磨料加工。     根据设定的工件和工具的相对位置关系可将机械加工方法大致分为两种方式:强制进给方式和压力进给方式,强制进给方式为普透机床上所用的加工方式,根据机床的动态精度,决定吃刀深度设定值及工件的精度(母性原则),玻化砖的磨削加工就属于这种加工方式,这种方式的特点是加工形状精确。加工效率高。     压力进给方式(以研磨为例)是在磨具、工件表面的突起部分进行选择性加工,从而提高精度的方式。加工平面、球、圆筒等比较简单的形状时,如果注意磨具的形状精度,就能使加工精度优于机床精度,这是这种加工方式的特点。以往,需进行精加工时,通常采用压力进给方式,但是必须指出的是这种加工方式缺乏形状赋予性。另外,还存在如下缺点:需要较长的加工时间,磨具通过一次的磨除量也很难确定。通常采用工件与磨具之间大的接触面积形式,因此适用于加工光洁度要求较低的面。     采用磨料加工时,磨料不同的支撑方式会使加工特性发生变化。具体讲,可以是磨削砂轮或徐附磨具(磨料粘附在布、纸上而成的磨具,如砂布、砂纸等)那样固结的方式;也可将悬浮磨料分散在工具表面或使磨料以三维自由度运动(如研磨、滚筒抛光、粘弹性流动加工等);或悬浮磨料在一个方向上高速运动,冲击工件,形成切割或抛光效果(如喷射加工)。此外,磨料的支撑是刚性的、弹性的还是粘弹性的,也将影响磨料分担荷皿和吃刀深度,使加工机理发生变化。  用以往的加工方法进行微细加工时,作用在工具上的压力过大,很难避免其变形破坏,因此以波束形式供给加工能量,例如激光加工、离子束加工等就属于这种方式。   这些加工方法中,机械加工方法的效率高,因而在工业上获得广泛应用,特别是金刚石砂轮磨削、研磨和抛光较为普遍。进行表面精加工时,可采用上图中1~5,7~10和15所示的方法,其他加工方法大多适用于打孔、切割或微加工等。切割时大多用金刚石砂轮进行磨削切割,打孔时按照不同孔径分别进行超声波加工、研磨或磨削方式加工。   2.结构陶瓷加工的主要问题   结构陶瓷加工虽然有许多方法,但加工成本高,加工效率低,加工精度差。其主要原因之一是结构陶瓷的硬度非常高。 对于结构陶瓷,未烧体或焙烧体主要用切削加工进行粗加工,烧结后用磨削进行精加工。   根据情况不同,也可以不经加工,直接磨削加工烧结体使之达到设计精度。   就加工过程而言,结构陶瓷与金属零件几乎是相似的,但结构陶瓷的加工余量则大得多。未烧体或焙烧体结构陶瓷粗加工时,易于出现强度不足或表面加工缺陷问题,或由于装卡不充分等原因,而不能获得所要求的最终加工形状。由于烧结时不能保持收缩均匀,在粗加工时就要使尺寸不要太靠近最终尺寸,所以留有的精加工的余量就大。对于金属加工,精加工余量如考虑热变形和热处理产生的黑皮,则应尽可能留百分之几毫米。对结构陶瓷加工来说,精加工余量则需有几毫米甚至十几毫米。加工余量大,生产率降低,生产成本升高。 结构陶瓷加工的另一个问题是加工刀具费用大。结构陶瓷的切削加工需使用高价的烧结金刚石、CBN刀具,精加工也是以金刚石砂轮为主,因此刀具费用要高出金属切削所用刀具数十倍至百倍。此外,结构陶瓷的强度对于加工条件是敏感的,难于实现高效率加工
发布时间: 2022 - 03 - 26
浏览次数:138
本文主要说说氧化锆和氧化铝陶瓷特性,和其优缺点  优点:质轻、易于加工,不耐磨,不耐油。 优点:轻便、弹性好、柔韧好、不易皱,有着极好的着色性、适于各种气候。 缺点:易吸水、不易腐蚀不利环保、易脏。  氧化锆,又称二氧化锆(ZrO2),是一种耐高温、耐腐蚀、耐磨损而且具有优良导电性能的无机非金属材料,ZrO2除传统应用于耐火材料和陶瓷颜料外,还应用于在电子陶瓷、功能陶瓷和结构陶瓷等高科技领域。氧化锆陶瓷呈白色,含杂质时呈黄色或灰色,一般含有HfO2,不易分离。在常压下纯ZrO2共有三种晶态。 氧化锆具有良好的化学性质。它是一种弱酸性氧化物,对碱溶液以及许多酸性溶液(热浓H2SO4、HF及H3PO4除外)都具有足够的稳定性。用ZrO2制成的坩埚可熔炼钾、钠、铝和铁等多种金属。它对硫化物、磷化物等也是稳定的。许多硅化物的熔融物及矿渣等对烧结ZrO2亦不起作用。  氧化锆可用于非金属矿业造纸重钙,油漆涂料、油墨,电子材料、锂铁电池,磁性材料,纺织染料,医药等行业的超细研磨与分散。  在保证氧化铝陶瓷品质的前提下,它已经实现了金属话,就是在氧化铝陶瓷表面牢固地粘附一层金属薄膜,使之实现陶瓷和金属间的焊接。目前用于完成氧化铝陶瓷金属化的方法有很多,包括钼锰法、镀金法、镀铜法、镀锡法、镀镍法、LAP法等。       金属化之后的氧化铝陶瓷产品具有金属和陶瓷接合力强;金属和陶瓷接合处密实,散热性好等优点。正是凭借这这一系列的优点,氧化铝陶瓷才能被广泛应用于LED散热基板、陶瓷封装、电子电路基板等。  以上就是贝斯特精密陶瓷为大家带来的内容,贝斯特陶瓷是一家专注生产加工陶瓷的厂家,专注氧化铝陶瓷件、氧化锆陶瓷加工,可以根据您的需求来加工陶瓷产品。
发布时间: 2022 - 03 - 24
浏览次数:140
回到顶部
联系我们
某某陶瓷有限公司
地址: 某某省某某市某某区 某某街道某某社区某某路xxx号
电话:86 0755 0000000
传真:86 0755 0000000
手机:13400000000
Q Q:xxxxxxxxxxxx
邮箱:xxxxxx@xxxxxx.com
手机:13400000000
留言
  • 姓名:
  • *
  • 电话:
  • *
  • 邮箱:
  • *
  • 内容:
  • *
     
手机云网站
某某陶瓷有限公司 Copyright © 2018-2020 All Rights Reserved.
 
 
 





欢迎来到贝斯特